

Newport News Waterworks

- Two water treatment plants
 - Harwood's Mill WTP (1989) 48 MGD capacity
 - Liquid Chlorine Feed system using evaporators
 - Planned conversion to hypochlorite in next 3-5 years during planned plant upgrade project
 - Lee Hall WTP (2005) 60 MGD capacity
 - Plant designed in late 1990's; construction began October 1999
 - On-site bulk storage sodium hypochlorite feed system

5

Drivers for Our Conversion to Hypo

- Detailed Alternatives Analysis conducted during design
 - Evaluated several options:
 - Liquid chlorine (evaporators)
 - Gaseous chlorine (pressure/vacuum and all vacuum) – multiple cylinders connected
 - Bulk sodium hypochlorite
 - On-site generation of sodium hypochlorite
 - Developed listing of noneconomic and economic factors

6

AETERNATIVE	ADVANTAGES	DISADVANTAGES
Liquid Chlorine System	 Requires relatively few ton containers on-line to provide the design dosage. Comparable to the Harwood's Mill system 	 System requires handling of liquid chlorine under pressure. System requires greater maintenanc due to the need for evaporators Requires a Risk Management Plan per EPA and OSHA regulations
Chlorine Gas (Press/Vacuum)	 Eliminates the evaporators used in liquid chlorine 	 Requires the use of a manifold cylinders and shutoff valves to restrict a leak to one ton container only. Requires a Risk Management Plan per EPA and OSHA regulations
Chlorine Gas (All- Vacuum)	Offers the greatest safety in that all pressure piping is eliminated.	 Requires handling a number of vacuum regulators during a changeout of cylinders. Requires maintenance of many different gas filters. Requires a Risk Management Plan per EPA and OSHA regulations
Sodium Hypochlorite (Bulk Delivery and Storage)	> Uses conventional liquid chemical handling procedures.	The 12.5% concentration of sodium hypochlorite degrades and can cause problems with valves and gabinding of pumps.
Sodium Hypochlorite (On-Site Generation)	 Safest alternative requires handling salt and 0.8% solution of sodium hypochlorite. 	The equipment necessary to genera the sodium hypochlorite makes this alternative have higher maintenance requirements.

Drivers for Our Conversion to Hypo

- Bottom line driver for our utility was safety of staff and neighbors
- Break-even costs were reasonable and manageable
- Logistics of implementation can be overcome
- Currently all neighboring utilities and commercial businesses using chlorine have or are in the process of converting to hypochlorite

13

Issues with Hypochlorite Use

- Vent, vent, vent!!!
- Proper equipment selection, layout, construction orientation is critical
- Degradation of hypochlorite from original strength – storage requirements
- Materials of Construction of Bulk Storage Tanks and Gaskets
- Safety concerns

14

Summary and Conclusions

- Each utility must develop their own listing of economic and non-economic factors and evaluate them systematically; include public input
- Hypochlorite is not without issues handling, storage, feeding, etc.
- Local factors and regulatory requirements may drive the decision

Thank You for Joining AWWA's Webcast

- As part of your registration, you are entitled to a 90 day archive access of today's program.
- Until next time, keep the water safe and secure.

31